Franz Pedit

Office: LGRT 1590 (formerly 1542)
Email: pedit@math.umass.edu
Phone: 413-545-0824
Research Field: Differential geometry

Profile


I am working on minimal and constant mean curvature surfaces, Willmore surfaces and, more generally, harmonic maps from Riemann surfaces, using a combination of methods from integrable systems theory, Riemann surface theory, geometric analysis, and gauge theory.

  • 1987 Post Doc  University of North Carolina Chapel HIll
  • 1986 Post Doc  Durham University, England
  • 1985 Ph.D.   University of Innsbruck, Austria
  • 1983 M.Sc.   University of Innsbruck
  • 1980 B.Sc.   University of Innsbruck

Selected publication


  1. A. Chern, F. Knoeppel, F. Pedit and U. Pinkall. Commuting Hamiltonian flows on curves in real space forms. Integrable Systems and Algebraic Geometry, Vol 1, LMS Lecture Note Series 458, (2020), 279--317.

  2. P. Wang, F. Pedit and  X. Ma. Moebius homogeneous Willmore 2-spheres in the n-sphere. Bull. Lond. Math. Soc. 50 (3), (2018), 509--512

  3. L. Heller, F. Pedit. Towards a constrained Willmore conjecture. "Willmore Energy and Willmore Conjecture", Chapman & Hall/CRC Monographs and Research Notes in Mathematics (2017), 119--139.


  4. C. Bohle, K. Leschke, F. Pedit, U. Pinkall. Conformal maps of a 2-torus into the 4-sphere. J. Reine Angew. Math., 671 (2012), 1--30


  5. F. Burstall, N. Donaldson, F. Pedit, U. Pinkall. Isothermic submanifolds in symmetric R-spaces. J. Reine Angew. Math. 660 (2011), 191--243


  6. C. Bohle, F. Pedit, U. Pinkall. Discrete holomorphic geometry I. Darboux transformations and spectral curves. J. Reine Angew. Math., 637 (2009), 99--139


  7. K. Leschke, F. Pedit, U. Pinkall. Willmore tori in 4-space with non-trivial normal bundle. Math. Ann., 332, 2 (2005), 381--394


  8. D. Ferus, K. Leschke, F. Pedit, U. Pinkall. Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic tori. Invent. Math., 146 (2001), 507--593


  9. U. Jeromin, I. McIntosh, P. Norman, F. Pedit. Periodic discrete conformal maps. J. Reine Angew. Math., 534 (2001), 129--153


  10. F. Pedit, U. Pinkall. Quaternionic analysis on Riemann surfaces and differential geometry. Doc. Math. J. DMV, Extra Volume ICM 1998, Vol. II, 389--400


  11. J. Dorfmeister, F. Pedit, H. Wu. Weierstrass-type representation of harmonic maps into symmetric spaces. Com. Anal. Geom., Vol. 6, No. 4 (1998), 633--667


  12. D. Ferus, F. Pedit. Isometric immersions of space forms and soliton theory. Math. Ann., 305 (1996), 329--342


  13. J. Bolton, F. Pedit, L. Woodward. Minimal surfaces and the affine Toda field model. J. Reine Angew. Math., 459 (1995), 119--150


  14. F. Burstall, D. Ferus, F. Pedit, U. Pinkall. Harmonic tori in symmetric spaces and integrable Hamiltonian systems on loop algebras. Ann. of Math., 138 (1993), 173--212